New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization

نویسندگان

  • Kenneth R. Koedinger
  • Emma Brunskill
  • Ryan Shaun Joazeiro de Baker
  • Elizabeth A. McLaughlin
  • John C. Stamper
چکیده

Increasing widespread use of educational technologies is producing vast amounts of data. Such data can be used to help advance our understanding of student learning and enable more intelligent, interactive, engaging, and effective education. In this paper, we discuss the status and prospects of this new and powerful opportunity for data-driven development and optimization of educational technologies, focusing on Intelligent Tutoring Systems. We provide examples of use of a variety of techniques to develop or optimize the select, evaluate, suggest, and update functions of intelligent tutors, including probabilistic grammar learning, rule induction, Markov decision process, classification, and integrations of symbolic search and statistical inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization Short title: Data-Driven Improvement of Intelligent Tutors

Increasing widespread use of educational technologies is producing vast amounts of data. Such data can be used to help advance our understanding of student learning and enable more intelligent, interactive, engaging, and effective education. In this paper, we discuss the status and prospects of this new and powerful opportunity for data-driven development and optimization of educational technol...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing for Abrasive Water Jet Machining

A water jet machining is an industrial tool capable of cutting a wide variety of materials using a very high-pressure jet of water, or a mixture of water and an abrasive substance. This paper addresses the concept of the Intelligent knowledge base system (IKBS) for optimization of product design and manufacturing process for water jet machining in computer based concurrent engineering environme...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing for Abrasive Water Jet Machining

A water jet machining is an industrial tool capable of cutting a wide variety of materials using a very high-pressure jet of water, or a mixture of water and an abrasive substance. This paper addresses the concept of the Intelligent knowledge base system (IKBS) for optimization of product design and manufacturing process for water jet machining in computer based concurrent engineering environme...

متن کامل

A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Estimating the costs of software development is one of the most important activities in software project management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects will result in failure on delivery on time and indicates the inefficiency of the software development team. On the other hand, high estimates of resources and costs for a project wil...

متن کامل

Intelligent Knowledge Based System Approach for Optimization of Design and Manufacturing Process for Wire-Electrical Discharge Machining

Wire electrical discharge machining (WEDM) is a method to cut conductive materials with a thin electrode that follows a programmed path. The electrode is a thin wire. Typical diameters range from .004" - .012" (.10mm - .30mm) although smaller and larger diameters are available. WEDM is a thermal machining process capable of accurately machining parts with varying hardness or complex shapes. WED...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI Magazine

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013